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Noise and time delay are two elements that are associated with many natural systems, and often they are
sources of complex behaviors. Understanding of this complexity is yet to be explored, particularly when both
elements are present. As a step to gain insight into such complexity for a system with both noise and delay, we
investigate such delayed stochastic systems both in dynamical and probabilistic perspectives. A Langevin
equation with delay and a random-walk model whose transition probability depends on a fixed time-interval
past(delayed random walk modedre the subjects of in depth focus. As well as considering relations between
these two types of models, we derive an approximate Fokker-Planck equation for delayed stochastic systems
and compare its solution with numerical results.

PACS numbd(s): 02.50—r, 02.30.Ks, 05.4CG-a

[. INTRODUCTION functions. We then consider the corresponding model in the
probability space by proposing delayed random-walk models
Many natural and artificial systems are associated witd18]. They are random walks whose transition probability
noise or fluctuation. Issues relating to noise have consedepends on the walker's position at a fixed time-intetdat
quently been a major topic in a variety of fielgsee, e.g., lay) past. The behavior of the correlation function is investi-
Refs.[1] and[2]). Though not as commonly recognized as9dated both analytically and numerically. The correspon-
noise, complex behaviors due to time delays are also founélences between the two descriptions of delayed stochastic
in many systems. Examples include differential equationgystems is also illustrated by deriving an approximate
with delay[3], delays in biophysiological controfd], signal ~ Fokker-Planck equation.
transmission delays in biological and artificial neural net-
works[5-9] and coupled oscillatorsl O] traffic modeld 11], Il. MODELS
electrical circuitd 12], physicg[13], and so on. This research
has revealed that time delay can introduce surprisingly rich We present here in general forms the types of models
behaviors to otherwise simple systems. From the point ofnvestigated in the following sections.
view of information processing, these factors have been con-
sidered obstacles; however, it was recently found or sug-
gested that noise and delay can actually be an integral part of
biological information processingp,14,15. The dynamical stochastic equation with delay we study
Against this background, systems with both noise and dehere is generally given by the following forms:
lay are beginning to gain attention. They have recently been
considered numerically{16,8] and analytically [17-22. v _ _
Such systems can be viewed as a special case of stochastic dtxt P <§t1§t2> oty ~t). @
systems with memory, which has been studied in physics
[23—28. However, the understanding of complex behaviorsthis equation can be viewed as an extension of either Lange-
associated with noise and delay together is far from comyin equation with delay, or delay differential equation with
plete. The main theme of this paper is to present some anapise. We refer to this equation hereafter as “delayed Lange-
|yt|cal a.nd nume“cal resu|tS on SUCh delayed StOChaS“C Sysl'in equation.” It is an extension Of the normal Langevin

tems from both dynamical and probabilistic perspectives. equation with delay and a functign. We place the follow-
The dynamical model we investigate is given by a Langeing conditions onu:

vin equation with delay, or, equivalently, it can be viewed as
a delay differential equation with noise. Exact and approxi-
mate analytical expressions are derived for its correlation

A. Delayed Langevin equation

u(8)>0 (s>0), wu(—s)=-wu(s) (Vs). (2

These restrictions make the dynamics symmetric with re-
*The author is also affiliated with the Laboratory for Information spect to the originX=0, which is stochastically attractive
Synthesis, RIKEN Brain Science Institute, Wako, Saitama, Japanvhen7=0. Noise¢, is the time-uncorrelated Gaussian noise.
Electronic address: ohira@csl.sony.co.jp It should be noted that the equation is normalized by the
"Electronic address: yamane@lorenz.expm.t.u-tokyo.ac.jp “width” of the noise &;.
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B. Delayed random walk In particular, we have a following invariant relationship with

We consider a random walk that takes a unit step in a unif€SPect to the delay.
time. The delayed random walk we start with is an extension 1
of_a_ p(_)sition de_pendent random walk v_vhose step tovv_ard the > =(XJF(X— ) —g(Xe= ) D). (10)
origin is more likely when no delay exists. Formally, it has

the following definition: This invariant property is used later as well.

P(Xt+1=nM Xt 41-,=9)
I1l. ANALYSIS
=g(s—1)P(X;=n—1;X;41_,=S$;%X;_,=s—1)
In this section, we will investigate the nature of the de-
+9(s+1)P(Xi=n—1:Xi+1-,=$ X ,=S+1) layed stochastic systems through two complete examples: a

(5= DP(X=Nn+1:X1s1 =S X_,=5—1) threshold and a linear model.

+f(s+1)P(Xi=n+1;Xi;1_,=S;X;_,=s+1), A. Threshold model

3 The first model, called a threshold model, is described by
the following delayed Langevin equation:
f(x)+g9(x)=1, 4

d
—X=—af(X_ )+ &, =48(t1—ty), (11
where the position of the walker at tinés X;, andP(X;, dt™t @f(Xe—r) + & <§t1§tz> (ti—tp), (1D

=Uy;X,= Up) is the joint probability for the walker to be at
u, andu, at timet; andt,, respectivelyf(x) andg(x) are
transition probabilities to take a step in the negative andg(s)=1 (s>0), 6(s)=0 (s=0), 6(s)=—1 (s<0).
positive directions, respectively, at positignin this paper, (12)
we further place the conditions:

where 6 is a step function,

The corresponding delayed random walk is given by de-
f(x)>g(x) (x>0), f(—=x)=g(x) (Vx). (5 fining f(x) andg(x) as

As in Eg. (2), these conditions make the delayed random f(x):E[lJrnﬁ(X)]

walks symmetric with respect to the origin, which is attrac- 2 '

tive without delay ¢=0). (13
We now proceed to obtain a few properties from this gen- 1

eral definition. By the symmetry with respect to the origin, 9(x)=3[1=70(x)],

the average position of the walker is 0. This symmetry can

be further used to inductively show in the stationary statewhere# is a constant and is the same step function as in

(t—o0) that Eqg. (12). Though the appearance of the definition is differ-
ent, this is the same delayed random walk studied previously

P(Xiz1=n;X;=n+1)=P(X;;1=n+1;X;=n). (6) [18]. Here, we will add on some details. Analysis on station-

ary state with tedious consideration of different cases gives

We can show the above as follows. By the definition of thethe following exact results.

stationarity, we have (1) The stationary probability distributioPy of X with

delay 7 is given as follows: For=0,
P(Xt+1= N Xi=n+1)+P(Xi4 1= N Xi=n—1) =P (X1

U
=n+1;X,=n)+P(X;s1=n—1:X,=n). 7) P8=m,
Forn=0, we note that due to the symmetry, we have (14)
P(X,,1=0:X,=1)=P (X, 1=1:X,=0) ®) PO U L™ ox
t+1 1N\ ( t+1 1N\ . X (1+7’)(1_7]) 1_|_77 ( )
Using these two equations inductively leads us to the desired For 7= 1
relation (6). We will derive the stationary probability distri- '
bution using this property. 7
Also, the multiplication of Eq(3) for the stationary state Py= 152,
by cos@n) and summation oven ands yields for the gen- 7
erating function:
pl_ 7(2+7) 15
(cog aX,))=coq a){cog aX,)) Y2(1+2n) (1t )’
+sin(a)(sin(aX){f(X;- ;) —g(X;-)}). 1 7 1— 9%
Pl= 5 (2=X).
€) (1+27)(1-m°(1+7
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This linear relationship can be qualitatively explained
both from the delayed Langevin equation and the delayed
random walk. First, let us start the discussion from the de-
layed Langevin equation. The formal integration of E4jl)
leads to

t
XtZ—Q’J 9(XS,T)dS+ Bt7 (21)
0

whereB; is a Brownian motion or a Wiener process. We now
rescale the equation by introducipg-0 and new variables

. . . . . , S ,t T
0 10 20 30 40 50 g'=—, t'==, e=-. (22)
. p p p
FIG. 1. \/(XZT> as a function ofr for various . (The error bars Also, by defining
are the root mean square error of data pojints. 1
Zy= Xy, (23
For r=2, p
o2 (2= 7?) and using the property
0 2+5p— 75>’ X
¢ P =6(x), (24)
o MA+29—n*— )
L 201+ 9)(2+59—75°)" we can transform Eq21) as follows:
(16) 1
t!
PZ 77(4+77+ 772) Ztrz—a’fo a(zsr_e)dS,+EBptr. (25)
2 21+ p)*(2+59— 7))’
X « We note the property that B, is a Wiener process, so is
pl_ n(2—n+7°) 1-9 (3=X) (1/\/;3)Bpt. Hence, we can deduce from Eg5) that
*(1-n)%2+57—7) |1+ 7 ' g L
(2) The stationary state mean square positif) can be azt: —af(Zi- o)+ \/_Eft' (26)
calculated using the above probability distributions.
For =0, By comparing Eq(11) and Eq.(26), we see that the system
can be scaled. Now let us consider the case that delay is
(X2>=i 17) and thatB, has a variance/®. Then, if X has a variance
o 29? o?(r,v)=(X?%), we obtain by noting Eq(23) that
For r=1, 1 1
o’ =, —=| =071, (27)
o 1 1+2p+29?+29° P’ \p| P
K 7 or, by taking the square root of both sides,
For r=2, 2
T 1 _ 1
oy L 24508t 129° -2 1 o) 1 Y 28
< 2>_ZZ 2+577_27]3 . ( )

This scaling relation(with the consideration of=0 casg,
An extension of the above analysis fo3 is quite in-  can be satisfied i&- has the following form:
tricate mainly due to the non-linearity associated with the
step function both in the delayed Langevin equation and the 1 5
delayed random walk, and it is yet to be explored. We have o(7,v)= \/?(KTJF v9), (29
found with the numerical simulation, however, that the sta- @

tionary root mean square positiaf(X’) is approximately & wherex is a constant. This equation shows that the station-
linear function ofr (Fig. 1). The seminumerical investigation ary root-mean-square position has a linear dependenee on

yielded the following relationshipl8: Let us now approach the same issue from the delayed
random-walk side. In the stationary state, we may assume
\/<X_2): 0.59 7+ L (20) that the number of steps between the two zero crossings by

T \/577 the walker(zero crossing intervalis a constant valué. By
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h
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st FIG. 2. A sample path by the walker of the
threshold model. The data is taken with=0.5
X h’ and 7= 20 between 4000 to 4500 stepsandh’
—5i are the estimates explained in the text.
-10
v
_15 L
-20t steps

the symmetry of the walk about the origin, we further as- (1) Linear relationship between the delay and the root
sume that the motion of the walker can be approximated amean square position of the model.

shown in Fig. 2. With these assumptions, the duration of (2) Stationary probability distribution of the delayed ran-
time step the walker moves in the negative direction is giverjom walk with smallr.

by h and the length of such motion can be approximated as However, the following questions are yet to be resolved:
h’'=[3(1+ n)—3(1— 5)]h= yh. The root-mean-square po- (1) Stationarity of the model with respect to increasing
sition then can be approximated as follows in terms$of delay is not clear. Does the model reach the stationary state

for all 7?
o hi2 (2) Oscillatory behavior of the correlation function has
V(X3 = 0 > k2 not been clarified analytically either in stationary or nonsta-
k=1

tionary regime.
(3) Probability distribution withr>3 in the delayed ran-

_ " E+E 1+£ dom walk has not been obtained analytically.
\/g 2 h h
n (1 0.58 B. Linear model
~—h|=|~|—nh. (30
\/— 2 2 .
6 We now turn our attention to the second model that we

. ] ) call a linear model. It turns out that the linear models are
On the other hand, if we consider the relation betwe@md  1,ore tractable analytically.

h, we can i_nfer that the fact that the walker takes positive The Jinear delayed Langevin equation is given as follows
moves .for time step durgtlon d)_rfmeans that the Walkgr was by settingu(s) = ys with y a constant.

earlier in the negative site duringsteps for the duration of
h. This leads to the following relationship:

d
&Xt:_’yxtff_l— s <§t1§t2>:5(t1_t2)- (33

h  hg
T= E - 7, (31)
whereh, is the value ofh with 7=0. By putting together ~ This Langevin equation is a special case of the equation con-
Egs.(30) and(31), we obtain sidered in Ref. 17. It has been shown that:
(1) The equation is stationary if and only #< 7/27y.
m~0-58777+ m_ (32) (2) The stationary correlation functiok(r)=(X;, X;)

has the following form whem < 7:

This result is in good agreement with our earlier seminu-
merical estimate given in E¢20). Thus, we have a slightly

more quantitative argument from the delayed random-walk B o1 _ 1+sin(yr)
model for the linear relationship between the root-mean- K(r)=K(0)cog yr) Z/sm(yr), K(0)= 2ycog y7)’
square position and the delay (34

Numerical simulations of the threshold model have shown
that with sufficiently larger given « or 7, its correlation
function oscillates both in nonstationary and stationary statefm the Appendix, we present a connection of the analytical
(Fig. 3). Unlike the linear model in the next section, we haveresult of Eq.(34) and integral representation of the correla-
not found a way to capture this oscillatory behavior againtjon function[29].
due primarily to the nonlinearity associated with the step For the corresponding delayed random walk, we define
function in the model. f(x) andg(x) as

In summary, on the threshold model we have some under-
standing of the following:
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f(x)=% (1+2d) (x>a), %(1+/3x) (—asx=a), %(1—200 (x<-—a),

(39

1 1 1
g(x)=§ (1-2d) (x>a), E(l—,Bx) (—as=x=), §(1+2d) (x<—a).

Physically, this model implies that wher=0 the transition probability for the walker to move toward the origin increases
linearly at a rate of3=2d/a as the distance increases from the origin up to the positiiter which the transition probability
holds constant. We assume that with sufficiently lamgere can ignore the probability that the walker is outside of the range
(—a,a).

Then, the previous invariant relation in E§.0) becomes the following with this model:

1
(X X)) =K(7) = 5 5. (36)

This invariance with respect toof the correlation function withr steps apart is a simple characteristic of this delayed random
walk model. This property is a key to obtaining the analytical expression for the correlation function, to which we now turn
our attention.

For the stationary state and<Qu< 7, the following is obtained the definitioB):
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50 80 b
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s 40 3 60
<] . .
q 3° g FIG. 4. Stationary correlation
~.§ 2 b= 20 function K(u) from simulations
e @ (dot9 as a function of stepg with
123 . .
5 10 3 A a3 ssseceverys - varying 7 compared Wlth th.e ana-
Iytical solution obtained in the
0 200 400 600 800 1000 -20 St text (line). The parameters are set
Steps P asa=50, d=0.4, andr=10 (a),
40 (b), 60 (c), and 80(d). The
100 (© 200 (d) simulation performed random
= = .
S e 2 150 walks of 6000 steps starting from
§ €0 ‘g 100 the origin. The position data after
= " & s 4500 steps are used to compute
S . g /\ P the correlation and averaged over
ko b 200 40 0 W 1000 10 000 trials.
2 7] 600 00 1000 T': -50
5 -20 5 -100
-40 © s
Steps Steps

P(xw:n:xt:l):z 9(S)P(Xsu=n—1;X;11=1; X4y ,=S)

+§ f(S)P(Xery=n+1;Xes1=1; X4y ,=$). (37)

We can derive the following equation for the correlation When y<1 (or a>d), the delayed random-walk model
function by multiplication of this equation bgl and sum- approximately corresponds to this Langevin equation with
ming over. delay by associating=~ 8. In particular, we can obtain Eq.
(34) from the result(40) obtained for the delayed random
K(u)=K(u=-1)=BK(r+1-u), (Isusr). (38  walk, by expanding in smajp. We see that

A similar argument can be given far<u,

(my-mH—(m*—mu?t
K(uy=K(u—-1)—BK(u=1-7), (7<u). (39 m,—m_ ~cog Bu) (42)
Equations(38) and (39) can be solved explicitly using Eq. B(mi —mt)
(36). In particular, for G<u< 7 we obtain — +—m —~ ~sin(Bu). (43)
L—m_
< (o mi-mH—(m-mYH 1 (mi-mY)
(W)=K(0) m,—m_ 2 m, —m_ The behavior of the correlation function is shown in Fig.
4. As we increaser, oscillatory behavior of the correlation
1 (my—m_)+B(m,—m.) function appears. The decay of the peak envelope is found
K(0)= ﬁ (m.—m. H—(m" —m" %) (40) numerically to be exponential. The decay rate of the enve-
T - lope for the smallu is approximately T2K(0)]. Also, the
2 mean-square positidiK (0)] increases with increasing delay
m+:(1— '%) igx/ﬁ2—4. 7 as shown in Fig. 5.

Analysis of the correlation function for the transient state
For 7<u, it is possible to writek(u) in a multiple summa- €an be done in a similar argument as in the stationary state.

tion form, though the expression becomes rather complexk€t US first approach this issue from the delayed random-
For example, withr<u<27, walk model. We can derive the set of coupled dynamical

equations as follows:
1 u—r7
K(u)= ﬁ—ﬁ; K(i), (42) K(0t+1)=K(0)+1—28K(rt— 1)

whereK(i)s summed are given by E#O0). K(ut+1)=K(u—1t+1)—BK[7—(u—1),t+u—r7],
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gz 250 (©) From the point of view of random walks, this delayed
S random-walk model provides an example whose correlation
-E 200 function behaves differently from commonly known random
a (a) walks with memory, such as self-avoiding, or persistent
© 150 walks [30]. In addition, we note that oscillatory or chaotic
= behavior associated with delays is generally difficult to ana-
g.. 100 (b) lyze [16]. Hence, this model also serves as one of the rare
2 analytically tractable examples among models with delay.
g We will now show the corresponding dynamics of corre-
é’ 50 lation functions for the delayed Langevin equati¢fhe de-

tail of derivation and associated proofs will be discussed

0 50 20 %o 80 elsewherd31].) The dynamics of the correlation function is
given by the following set of coupled equations:

Delay p
FIG. 5. The mean-square positi¢¥?)=K(0) with varying de- EK(OI) = —2BK(nt=7)+1 (46)
lay 7. The data is from simulation&otg averaged over 10 000
trials with 60 000 steps as in Fig. 4, and from the analytical solution
obtained in the tex{line). The parameters are set as 50, andd —K(u,t)=—BK(7—u,t+u—7 (0<u=r)
=0.1(a), 0.3(b), and 0.4(c). au

(47)
(Isusr7) (44) 3
—K(u,t)=—BK(u—r,t <u). 48
K(ut+1)=K(u—1t+1)— BK[(u—1)— rt+1], qu R ==pKU=nt) (7<u) 49
(u>7). These sets of equations clearly correspond to the sets derived

from the delayed random-walk model. We can further derive
For the initial condition, we need to specify the correlationfor non-negative integem that
function for the interval of initialr steps. Let us consider a
random walk, which is held at the origin before the walker ¢
began to take a step, thus performing a homogeneous raﬁK(u't):_'BK(u_T’t)_IBK(T+U't_7)
dom walk for the steps (%). This translates to the initial
condition for the correlation function as

o (=B
+> ——(u=in)' [mr<us(m+1)r].
K(ut)=t (0<u=r). (45) o
(49
The solution can be iteratively generated for E44) given

this initial condition. We have plotted some examples for theThorough investigation of these coupled partial differential
dynamics of the mean-square displaceme(®) in Fig. 6.  equations for the correlation function is currently underway.

Again, the oscillatory behavior arises with increasing In summary, on the linear model we have some under-
Hence, the model discussed here shows the oscillatory betanding of the following:

havior with increasing delay that appears in both its station- (1) Conditions for the stationarity of the model.

ary and transient states. (2) Analytical form of stationary correlation function
K(u) for u<r.
160 @ (3) A set of equations for the correlation function to obey
140 both in nonstationary and stationary regime, from which one

can trace its oscillatory behavior.
However, the following questions are yet to be resolved.
(1) Expressions for nonstationary and stationary probabil-
ity distribution have not been obtained.
60 - o os )] (2) Thorough investigation of a set of equation for the
correlation function needs to be made.

120

K, 1) 100 (c)

10 @
20

IV. FOKKER-PLANCK EQUATION

50 100 150 200 250 300

The main theme of this section is derivation of a Fokker—
Planck equation for the linear model using the correspon-

FIG. 6. Examples of dynamics of the mean square positiorde€nce between the delayed Langevin equation and the de-
(X?)=K(0) with varying delayr. The data is from simulations layed random walk(A short account of this section is given
(dots averaged over 10 000 trials, and from the analytical solutiondn Ref.[32].) Our strategy of derivation uses indirect deriva-
(line). The parameters are setas 50, d=0.45, andr=20(a), 40  tion via expansion of the delayed random walk, rather than a
(b), 60 (c), and 80(d). direct derivation from the Langevin equation. The derived
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Fokker-Planck equation contains a derivative with respect to With the expansion of step operator to second order in
the delay parameter. The stationary solution of the equatioand the first order it and 7, we obtain the Fokker-Planck
is also determined and is shown to have good agreememguation:

with numerical simulation.

We proceed toward a Fokker-Planck equation by expand- J

—+ i) P.(ntst—7)= (;in[(ﬂs)P,(n,t;s,t— 7)]

ing the linear model in the delayed random walk description ot Jr

using the “step operators” and its expansion as discussed in 1 22

Ref. 2. We first rewrite the definition of the delayed random i izp (nt:s,t—1).

walk with delay 7 as follows: 29n° T
P.(nt+1;s,t—7)=g(s)P(n—1t;s,t—7)+f(s)P, (57

We note that this equation is for the joint probability be-

X(n+ltst=1), (50 tween two points with time specifically apart. Also, it
where should be noted that the delay parametexppears in a de-
rivative term in a dimensionally correct way, which, how-
P_(n,t;s,t—7)=P(X,=n;X,_.=S) (51) ever, is not apparent from the form of the Langevin equation
! ! given in Eq.(33).
in the earlier definition(3). By subtractingP(n,t;s,t— 7) Let us invgstigate the stationary solution of the Fokker-
from both sides and using(s) + f(s) =1, we obtain Planck equation,
P.(nt+1;s,t—7)—P.(n,t;s,t—7) ape _ 7 pe +1 il pe
. . Z-PAns )= —C[(BS)PUNS 1)1+ 5 25 PiN.S,7),
=g(s)P,(n—1t;s,t—7)+f(S)P,(n+1t;s,t—7) (58)
—[g(s)+f(s)]Pn,t;s,t— 7). (52) with a boundary condition,
In order to go from this discrete space and time model to a P%(n,s,7=0)= \/ge_ﬁnzé(n—s). (59

continuous time and space expansion, we introduce the step

;)upnecr?(t)cr)]rﬁ., defined by the following action on an arbltraryThiS boundary condition is chosen to satisfy the requirement

that with 7=0, the stationary solution should be identical to

+ —h(u+ - —h(u—1). that for the Ornstein-Uhlenbeck process.
Euh(W=h(u+1), & h(wW=h(u=1) 3 The solution can be found using Fourier transforms,
d which involves only Gaussian integrations for this equation.

+ — .
In effect, £, and&, shift u by one. They can be expande We first transform Eq(58) as follows[33]:

as

g 1 i77‘5(k s T):(ik,BS_ 1kz)?"*(k S,7) (60)

. _ 9 4+ . (9 Oy 2 1 1
i TR T 59 i
where

Using these step operators, we can rewrite the above equa-
- . +oo _
tion as follows: Pe(k,s,r)zf P¢(n,s,7)e” Kdn. (61)

(EFET-DP(nt;st—1)
B . Solving this transformed equation using the boundary condi-
=[(En —Dg(s)+ (& —D)f(9)]PAn,t;s,t—7) tion leads to

(55 Pek,s,7)=Pe(K,S, 7= O)e(ikﬁs—(l/z)kz)f’

We note that we are using these step operators not only for (62
space but with delay which is a parameter in the model. The Pe(k,s, 7= O)Zef(l/4ﬁ)k2

implicit assumption is given that the following is justified for ” '

small parametee: The desired result is given by the inverse transform as fol-
lows:
P.. dnt;st—r)=~Pnt;s,t—(7+e)]=P(nt;s,t—7)
d Pe(n,s, T):( \/Ee‘ (1/2) BZSZT‘E“S)
+e—P,(nt;s,t—17). (56) ™
aT
L . . 1 [(n—s)2/27]
We note that this is a rather strong assumption knowing that X me . (63

delay acts as a bifurcation parameter changing the behavior

of the system. Thus, the above assumption can be valid, &/e note that the second factor approaches the delta function
most, in the range where the behavior of the system isvith 7 approaching 0 consistent with the boundary condition.
“smooth” with respect to the delay parameter. A sample plot of this solution is shown in Fig. 7. To verify
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FIG. 7. A plot of the stationary joint probability distribution ER
function. The parameters are set@s d/a=0.004 andr=30.
©

our analytical derivation, we have compared the solution
(63) with numerical simulation with various. Samples are 0.007
presented in Figs. 8 and 9, which show good agreement. b e

We stress again that the derived Fokker-Planck equation
is just for the joint probability between two points with time
specifically 7 apart. Derivation of a general equation as well 0.00
as investigation of the behavior of its nonstationary solution
are left for the future. Nevertheless, our systematic derivation
here has illustrated a correspondence between the delayed
Langevin equations and delayed random walks, and provided
another tool in the form of the Fokker-Planck equation to 0-001
study delayed stochastic systems. It is expected to be useful, P oo
particularly with respect to gaining an understanding of their
probability density function. It is also of interest to compare Vo
our results from this indirect path with a more direct deriva-
tion from the Langevin Eq(33). Some research based on
expansion with delay parameters has been d@2¢ How

these two lines of derivation relate to each other requires FIG. 8. Stationary probability distribution from simulations
further investigation. (doty compared with the analytical solution obtained in the text

(line). The parameters are set &s 0, B=d/a=0.008 andr=10
(@, 20 (b), 30 (c), and 40(d). The simulation performed delayed
V. DISCUSSION random walks of Eq(2), for 5000 steps starting from the origin for
900 trials. The position data after 4000 steps were used to compute
the stationary joint probability.

0.002

30

[CH

30

We have presented a study of delayed stochastic syste
from both dynamical equation and random walk perspec
tives. In particular, we have tried to illustrate the connections
between the two descriptions.

Some points of discussion are now in order. The first
point is how this model is placed in relation to other models 0.007 ()

with noise and delayor memory, to be more geneyalWe 6. 006

particularly note that the Langevin equation discussed here is

not a special case of the generalized Langevin equation 0.005 (b)

which is consistent with the fluctuation-dissipation theorem. p ¢.004

As argued in Ref. 23 for the generalized Langevin equation, (©

the noise term needs to be “colored” in E@3) for consis- 0.003

tency. Investigation of the colored noise case in its relation to 0.002 )

delayed random walks as well as further studies of the cor- 0. 001 (e)
respondence of dynamical aspects of E@.and (33) are

currently underway. -10 0 10 20 30

We also note that we can find an application of the de-
layed stochastic models discussed here to the study of such a
system as human posture contf84,18. A resonance be- FIG. 9. Comparison of the stationary probability distribution as
havior between noise and delay by simpler stochastic eleén Fig. 2 with different parameter settingg=0.008, =10, s=0
ments has been studied as wgD]. However, the task of (a), 4 (b), 8 (c), 12 (d), and 16(e).
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[ %
[
<

understanding delayed stochastic systems with many ele-
ments involved remains. Such efforts are at the same time
looking at a much wider range of important applications such

as neural networks, immune systems, economics, the Inter-
net, and so on. Though limited to simple concrete models, it
is hoped that our investigation here from probabilistic and

dynamical perspectives will be of help toward deeper under-

standing of delayed stochastic systems.

Mean Square Position

APPENDIX: CORRELATION FUNCTION OF LANGEVIN
EQUATION WITH DELAY 0 20 10 60 80 100

In this section, we connect the two approaches toward the Delay
correlation function for the Langevin equation with delay.
The first approach is due to RéfL7], in which the expres- FIG. 10. Example of cor_nparison_ of the mean-square position
sion given in Eq.(34) is derived. The second approach is (X*)=K(0) from the analytical solutiori34) (line) and from the
along the line of Ref. 23 using Fourier transform. With this "umerical integration of EqA1) (dots. The parameters are set as

approachK(u) is given as follows in the integral forms: a=50,d=03.
. giou (& &)= ol(ti— 1) —to]. (A2)
K(u): _f 2 2 T dw . . .
27) 0 0+ B—2BwSINwT we have the following integral form for the correlation func-
tion C(u):
1J+°° coswu q
= 2 7 . w 1 +oo eia)(u+ 7)
m)o o +p—2Bwshwr :_J
. Clu) 27) v 0’+B°—2Bw Sina)rdw' (A3)
1 + oo el,Byu
- 27B) o (iy+e P (—iy+ehr) dy. We note that from the comparison of integral forms, we have

a relationship between the correlation function for the white
(A1) and the colored noise case. In particular, whien0,

Thus, foru< 7, these two approaches indirectly established

the identity between the Eqé34) and (Al). Direct verifica- C(0)=K(7)= ﬁ (A4)

tion of the identity is hindered by the fact that the poles of

the integrand in Eq(Al) are solutions of a transcendental In the colored noise case considered here, the stationary
equation. In Fig. 10, we have shown an example of numerimean square position is constant even with changing delay.

cal integration of the integral and E(R4) for K(0) [35]. This is a natural consequence of the fact that our choice of
Finally, we note that when we have a colored noise of thehe colored noise is based on the consistency condition with
following type instead of the white noise in E@®3), the fluctuation-dissipation theorem discussed in Ref. 23.
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