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Delayed stochastic systems
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Noise and time delay are two elements that are associated with many natural systems, and often they are
sources of complex behaviors. Understanding of this complexity is yet to be explored, particularly when both
elements are present. As a step to gain insight into such complexity for a system with both noise and delay, we
investigate such delayed stochastic systems both in dynamical and probabilistic perspectives. A Langevin
equation with delay and a random-walk model whose transition probability depends on a fixed time-interval
past~delayed random walk model! are the subjects of in depth focus. As well as considering relations between
these two types of models, we derive an approximate Fokker-Planck equation for delayed stochastic systems
and compare its solution with numerical results.

PACS number~s!: 02.50.2r, 02.30.Ks, 05.40.2a
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I. INTRODUCTION

Many natural and artificial systems are associated w
noise or fluctuation. Issues relating to noise have con
quently been a major topic in a variety of fields~see, e.g.,
Refs. @1# and @2#!. Though not as commonly recognized
noise, complex behaviors due to time delays are also fo
in many systems. Examples include differential equatio
with delay@3#, delays in biophysiological controls@4#, signal
transmission delays in biological and artificial neural n
works @5–9# and coupled oscillators@10# traffic models@11#,
electrical circuits@12#, physics@13#, and so on. This researc
has revealed that time delay can introduce surprisingly
behaviors to otherwise simple systems. From the poin
view of information processing, these factors have been c
sidered obstacles; however, it was recently found or s
gested that noise and delay can actually be an integral pa
biological information processing@6,14,15#.

Against this background, systems with both noise and
lay are beginning to gain attention. They have recently b
considered numerically@16,8# and analytically @17–22#.
Such systems can be viewed as a special case of stoch
systems with memory, which has been studied in phys
@23–28#. However, the understanding of complex behavi
associated with noise and delay together is far from co
plete. The main theme of this paper is to present some
lytical and numerical results on such delayed stochastic
tems from both dynamical and probabilistic perspectives

The dynamical model we investigate is given by a Lan
vin equation with delay, or, equivalently, it can be viewed
a delay differential equation with noise. Exact and appro
mate analytical expressions are derived for its correla
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functions. We then consider the corresponding model in
probability space by proposing delayed random-walk mod
@18#. They are random walks whose transition probabil
depends on the walker’s position at a fixed time-interval~de-
lay! past. The behavior of the correlation function is inves
gated both analytically and numerically. The correspo
dences between the two descriptions of delayed stocha
systems is also illustrated by deriving an approxim
Fokker-Planck equation.

II. MODELS

We present here in general forms the types of mod
investigated in the following sections.

A. Delayed Langevin equation

The dynamical stochastic equation with delay we stu
here is generally given by the following forms:

d

dt
Xt52m~Xt2t!1j t , ^j t1

j t2
&5d~ t12t2!. ~1!

This equation can be viewed as an extension of either Lan
vin equation with delay, or delay differential equation wi
noise. We refer to this equation hereafter as ‘‘delayed Lan
vin equation.’’ It is an extension of the normal Langev
equation with delay and a functionm. We place the follow-
ing conditions onm:

m~s!.0 ~s.0!, m~2s!52m~s! ~;s!. ~2!

These restrictions make the dynamics symmetric with
spect to the originX50, which is stochastically attractive
whent50. Noisej t is the time-uncorrelated Gaussian nois
It should be noted that the equation is normalized by
‘‘width’’ of the noise j t .

n.
1247 ©2000 The American Physical Society
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B. Delayed random walk

We consider a random walk that takes a unit step in a
time. The delayed random walk we start with is an extens
of a position dependent random walk whose step toward
origin is more likely when no delay exists. Formally, it h
the following definition:

P~Xt115n;Xt112t5s!

5g~s21!P~Xt5n21;Xt112t5s;Xt2t5s21!

1g~s11!P~Xt5n21;Xt112t5s;Xt2t5s11!

1 f ~s21!P~Xt5n11;Xt112t5s;Xt2t5s21!

1 f ~s11!P~Xt5n11;Xt112t5s;Xt2t5s11!,

~3!

f ~x!1g~x!51, ~4!

where the position of the walker at timet is Xt , andP(Xt1
5u1 ;Xt2

5u2) is the joint probability for the walker to be a

u1 andu2 at time t1 and t2, respectively.f (x) andg(x) are
transition probabilities to take a step in the negative a
positive directions, respectively, at positionx. In this paper,
we further place the conditions:

f ~x!.g~x! ~x.0!, f ~2x!5g~x! ~;x!. ~5!

As in Eq. ~2!, these conditions make the delayed rand
walks symmetric with respect to the origin, which is attra
tive without delay (t50).

We now proceed to obtain a few properties from this g
eral definition. By the symmetry with respect to the orig
the average position of the walker is 0. This symmetry c
be further used to inductively show in the stationary st
(t→`) that

P~Xt115n;Xt5n11!5P~Xt115n11;Xt5n!. ~6!

We can show the above as follows. By the definition of t
stationarity, we have

P~Xt115n;Xt5n11!1P~Xt115n;Xt5n21!5P~Xt11

5n11;Xt5n!1P~Xt115n21;Xt5n!. ~7!

For n50, we note that due to the symmetry, we have

P~Xt1150;Xt51!5P~Xt1151;Xt50!. ~8!

Using these two equations inductively leads us to the des
relation ~6!. We will derive the stationary probability distri
bution using this property.

Also, the multiplication of Eq.~3! for the stationary state
by cos(an) and summation overn ands yields for the gen-
erating function:

^cos~aXt!&5cos~a!^cos~aXt!&

1sin~a!^sin~aXt!$ f ~Xt2t!2g~Xt2t!%&.

~9!
it
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In particular, we have a following invariant relationship wi
respect to the delay.

1

2
5^Xt$ f ~Xt2t!2g~Xt2t!%&. ~10!

This invariant property is used later as well.

III. ANALYSIS

In this section, we will investigate the nature of the d
layed stochastic systems through two complete example
threshold and a linear model.

A. Threshold model

The first model, called a threshold model, is described
the following delayed Langevin equation:

d

dt
Xt52au~Xt2t!1j t , ^j t1

j t2
&5d~ t12t2!, ~11!

whereu is a step function,

u~s!51 ~s.0!, u~s!50 ~s50!, u~s!521 ~s,0!.
~12!

The corresponding delayed random walk is given by
fining f (x) andg(x) as

f ~x!5
1

2
@11hu~x!#,

~13!

g~x!5
1

2
@12hu~x!#,

whereh is a constant andu is the same step function as i
Eq. ~12!. Though the appearance of the definition is diffe
ent, this is the same delayed random walk studied previou
@18#. Here, we will add on some details. Analysis on statio
ary state with tedious consideration of different cases gi
the following exact results.

~1! The stationary probability distributionPX
t of X with

delayt is given as follows: Fort50,

P0
05

h

11h
,

~14!

PX
05

h

~11h!~12h! H 12h

11hJ X

~1<X!.

For t51,

P0
15

h

112h
,

P1
15

h~21h!

2~112h!~11h!
, ~15!

PX
15

h

~112h!~12h!2 H 12h

11hJ X

~2<X!.
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For t52,

P0
25

h~22h2!

215h2h3 ,

P1
25

h~412h2h22h3!

2~11h!~215h2h3!
,

~16!

P2
25

h~41h1h2!

2~11h!2~215h2h3!
,

PX
15

h~22h1h2!

~12h!3~215h2h3! H 12h

11hJ X

~3<X!.

~2! The stationary state mean square position^Xt
2& can be

calculated using the above probability distributions.
For t50,

^X0
2&5

1

2h2 . ~17!

For t51,

^X1
2&5

1

2h2

112h12h212h3

112h
. ~18!

For t52,

^X2
2&5

1

2h2

215h18h2112h322h5

215h22h3 . ~19!

An extension of the above analysis for 3<t is quite in-
tricate mainly due to the non-linearity associated with
step function both in the delayed Langevin equation and
delayed random walk, and it is yet to be explored. We h
found with the numerical simulation, however, that the s
tionary root mean square positionA^Xt

2& is approximately a
linear function oft ~Fig. 1!. The seminumerical investigatio
yielded the following relationship@18#:

A^Xt
2&50.59ht1

1

A2h
. ~20!

FIG. 1. A^Xt
2& as a function oft for varioush. ~The error bars

are the root mean square error of data points.!
e
e
e
-

This linear relationship can be qualitatively explain
both from the delayed Langevin equation and the dela
random walk. First, let us start the discussion from the
layed Langevin equation. The formal integration of Eq.~11!
leads to

Xt52aE
0

t

u~Xs2t!ds1Bt , ~21!

whereBt is a Brownian motion or a Wiener process. We no
rescale the equation by introducingr.0 and new variables

s85
s

r
, t85

t

r
, e5

t

r
. ~22!

Also, by defining

Zt8[
1

r
Xrt8 , ~23!

and using the property

uS x

r D5u~x!, ~24!

we can transform Eq.~21! as follows:

Zt852aE
0

t8
u~Zs82e!ds81

1

r
Brt8 . ~25!

We note the property that ifBt is a Wiener process, so i
(1/Ar)Brt . Hence, we can deduce from Eq.~25! that

d

dt
Zt52au~Zt2e!1

1

Ar
j t. ~26!

By comparing Eq.~11! and Eq.~26!, we see that the system
can be scaled. Now let us consider the case that delayt
and thatBt has a variancen2. Then, if X has a variance
s2(t,n)5^Xt

2&, we obtain by noting Eq.~23! that

s2S t

r
,

1

Ar
D 5

1

r2 s2~t,1!, ~27!

or, by taking the square root of both sides,

sS t

r
,

1

Ar
D 5H 1

Ar
J 2

s~t,1!. ~28!

This scaling relation,~with the consideration oft50 case!,
can be satisfied ifs has the following form:

s~t,n!5
1

A2a
~kt1n2!, ~29!

wherek is a constant. This equation shows that the stati
ary root-mean-square position has a linear dependence ot.

Let us now approach the same issue from the dela
random-walk side. In the stationary state, we may assu
that the number of steps between the two zero crossing
the walker~zero crossing interval! is a constant valueh. By
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FIG. 2. A sample path by the walker of th
threshold model. The data is taken withh50.5
andt520 between 4000 to 4500 steps.h andh8
are the estimates explained in the text.
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the symmetry of the walk about the origin, we further a
sume that the motion of the walker can be approximated
shown in Fig. 2. With these assumptions, the duration
time step the walker moves in the negative direction is giv
by h and the length of such motion can be approximated

h85@ 1
2 (11h)2 1

2 (12h)#h5hh. The root-mean-square po
sition then can be approximated as follows in terms ofh:

A^Xt
2&5A2

h
(
k51

h/2

h2k2

5
h

A6
hAS 1

2
1

1

h
D S 11

1

h
D

'
h

A6
hS 1

2
D'S 0.58

2
Dhh. ~30!

On the other hand, if we consider the relation betweent and
h, we can infer that the fact that the walker takes posit
moves for time step duration ofh means that the walker wa
earlier in the negative site duringt steps for the duration o
h. This leads to the following relationship:

t5
h

2
2

h0

2
, ~31!

whereh0 is the value ofh with t50. By putting together
Eqs.~30! and ~31!, we obtain

A^Xt
2&'0.58ht1A^Xt50

2 &. ~32!

This result is in good agreement with our earlier semin
merical estimate given in Eq.~20!. Thus, we have a slightly
more quantitative argument from the delayed random-w
model for the linear relationship between the root-me
square position and the delayt.

Numerical simulations of the threshold model have sho
that with sufficiently larget given a or h, its correlation
function oscillates both in nonstationary and stationary sta
~Fig. 3!. Unlike the linear model in the next section, we ha
not found a way to capture this oscillatory behavior aga
due primarily to the nonlinearity associated with the s
function in the model.

In summary, on the threshold model we have some un
standing of the following:
-
s
f
n
s

e

-

lk
-

n

s

,
p

~1! Linear relationship between the delay and the ro
mean square position of the model.

~2! Stationary probability distribution of the delayed ra
dom walk with smallt.

However, the following questions are yet to be resolve
~1! Stationarity of the model with respect to increasi

delay is not clear. Does the model reach the stationary s
for all t?

~2! Oscillatory behavior of the correlation function ha
not been clarified analytically either in stationary or nons
tionary regime.

~3! Probability distribution witht.3 in the delayed ran-
dom walk has not been obtained analytically.

B. Linear model

We now turn our attention to the second model that
call a linear model. It turns out that the linear models a
more tractable analytically.

The linear delayed Langevin equation is given as follo
by settingm(s)5gs with g a constant.

d

dt
Xt52gXt2t1j t , ^j t1

j t2
&5d~ t12t2!. ~33!

This Langevin equation is a special case of the equation c
sidered in Ref. 17. It has been shown that:

~1! The equation is stationary if and only ift,p/2g.
~2! The stationary correlation functionK(r )[^Xt1rXt&

has the following form whenr ,t:

K~r !5K~0!cos~gr !2
1

2g
sin~gr !, K~0!5

11sin~gt!

2g cos~gt!
.

~34!

In the Appendix, we present a connection of the analyti
result of Eq.~34! and integral representation of the correl
tion function @29#.

For the corresponding delayed random walk, we defi
f (x) andg(x) as
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f ~x!5
1

2
~112d! ~x.a!,

1

2
~11bx! ~2a<x<a!,

1

2
~122d! ~x,2a!,

~35!

g~x!5
1

2
~122d! ~x.a!,

1

2
~12bx! ~2a<x<!,

1

2
~112d! ~x,2a!.

Physically, this model implies that whent50 the transition probability for the walker to move toward the origin increa
linearly at a rate ofb[2d/a as the distance increases from the origin up to the positiona after which the transition probability
holds constant. We assume that with sufficiently largea, we can ignore the probability that the walker is outside of the ra
(2a,a).

Then, the previous invariant relation in Eq.~10! becomes the following with this model:

^Xt1tXt&5K~t!5
1

2b
. ~36!

This invariance with respect tot of the correlation function witht steps apart is a simple characteristic of this delayed rand
walk model. This property is a key to obtaining the analytical expression for the correlation function, to which we no
our attention.

For the stationary state and 0<u<t, the following is obtained the definition~3!:

FIG. 3. ~a! Dynamics of the
root-mean-square position fo
various t with h50.5. ~b!
Samples of stationary correlatio
functionsK(u)5^Xt1uXt& for the
threshold model withh50.5 and
t50 ~a!, 6 ~b!, 10 ~c!, and 20~d!.
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P~Xt1u5n;Xt5 l !5(
s

g~s!P~Xt1u5n21;Xt115 l ;Xt1u2t5s!

1(
s

f ~s!P~Xt1u5n11;Xt115 l ;Xt1u2t5s!. ~37!

FIG. 4. Stationary correlation
function K(u) from simulations
~dots! as a function of stepsu with
varying t compared with the ana
lytical solution obtained in the
text ~line!. The parameters are se
as a550, d50.4, andt510 ~a!,
40 ~b!, 60 ~c!, and 80 ~d!. The
simulation performed random
walks of 6000 steps starting from
the origin. The position data afte
4500 steps are used to compu
the correlation and averaged ove
10 000 trials.
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We can derive the following equation for the correlati
function by multiplication of this equation bynl and sum-
ming over.

K~u!5K~u21!2bK~t112u!, ~1<u<t!. ~38!

A similar argument can be given fort,u,

K~u!5K~u21!2bK~u212t!, ~t,u!. ~39!

Equations~38! and ~39! can be solved explicitly using Eq
~36!. In particular, for 0<u<t we obtain

K~u!5K~0!
~m1

u 2m1
u21!2~m2

u 2m2
u21!

m12m2
2

1

2

~m1
u 2m2

u !

m12m2

K~0!5
1

2b

~m12m2!1b~m1
t 2m2

t !

~m1
t 2m1

t21!2~m2
t 2m2

t21!
~40!

m65S 12
b2

2 D6
b

2
Ab224.

For t,u, it is possible to writeK(u) in a multiple summa-
tion form, though the expression becomes rather comp
For example, witht,u<2t,

K~u!5
1

2b
2b(

i 51

u2t

K~ i !, ~41!

whereK( i )s summed are given by Eq.~40!.
x.

When g!1 ~or a@d), the delayed random-walk mode
approximately corresponds to this Langevin equation w
delay by associatingg'b. In particular, we can obtain Eq
~34! from the result~40! obtained for the delayed random
walk, by expanding in smallb. We see that

~m1
u 2m1

u21!2~m2
u 2m2

u21!

m12m2
'cos~bu! ~42!

b~m1
u 2m2

u !

m12m2
'sin~bu!. ~43!

The behavior of the correlation function is shown in Fi
4. As we increaset, oscillatory behavior of the correlation
function appears. The decay of the peak envelope is fo
numerically to be exponential. The decay rate of the en
lope for the smallu is approximately 1/@2K(0)#. Also, the
mean-square position@K(0)# increases with increasing dela
t as shown in Fig. 5.

Analysis of the correlation function for the transient sta
can be done in a similar argument as in the stationary st
Let us first approach this issue from the delayed rando
walk model. We can derive the set of coupled dynami
equations as follows:

K~0,t11!5K~0,t !1122bK~t,t2t!

K~u,t11!5K~u21,t11!2bK@t2~u21!,t1u2t#,
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~1<u<t! ~44!

K~u,t11!5K~u21,t11!2bK@~u21!2t,t11#,

~u.t!.

For the initial condition, we need to specify the correlati
function for the interval of initialt steps. Let us consider
random walk, which is held at the origin before the walk
began to take a step, thus performing a homogeneous
dom walk for the steps (1,t). This translates to the initia
condition for the correlation function as

K~u,t !5t ~0<u<t!. ~45!

The solution can be iteratively generated for Eq.~44! given
this initial condition. We have plotted some examples for
dynamics of the mean-square displacementK(0) in Fig. 6.
Again, the oscillatory behavior arises with increasingt.
Hence, the model discussed here shows the oscillatory
havior with increasing delay that appears in both its stati
ary and transient states.

FIG. 5. The mean-square position^X2&5K(0) with varying de-
lay t. The data is from simulations~dots! averaged over 10 000
trials with 60 000 steps as in Fig. 4, and from the analytical solut
obtained in the text~line!. The parameters are set asa550, andd
50.1 ~a!, 0.3 ~b!, and 0.4~c!.

FIG. 6. Examples of dynamics of the mean square posi
^X2&5K(0) with varying delayt. The data is from simulations
~dots! averaged over 10 000 trials, and from the analytical soluti
~line!. The parameters are set asa550, d50.45, andt520 ~a!, 40
~b!, 60 ~c!, and 80~d!.
r
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From the point of view of random walks, this delaye
random-walk model provides an example whose correla
function behaves differently from commonly known rando
walks with memory, such as self-avoiding, or persiste
walks @30#. In addition, we note that oscillatory or chaot
behavior associated with delays is generally difficult to a
lyze @16#. Hence, this model also serves as one of the r
analytically tractable examples among models with delay

We will now show the corresponding dynamics of corr
lation functions for the delayed Langevin equation.~The de-
tail of derivation and associated proofs will be discuss
elsewhere@31#.! The dynamics of the correlation function
given by the following set of coupled equations:

]

]t
K~0,t !522bK~t,t2t!11 ~46!

]

]u
K~u,t !52bK~t2u,t1u2t! ~0,u<t!

~47!

]

]u
K~u,t !52bK~u2t,t ! ~t,u!. ~48!

These sets of equations clearly correspond to the sets de
from the delayed random-walk model. We can further der
for non-negative integerm that

]

]t
K~u,t !52bK~u2t,t !2bK~t1u,t2t!

1(
i 50

m
~2b! i

i !
~u2 i t! i @mt,u<~m11!t#.

~49!

Thorough investigation of these coupled partial different
equations for the correlation function is currently underwa

In summary, on the linear model we have some und
standing of the following:

~1! Conditions for the stationarity of the model.
~2! Analytical form of stationary correlation function

K(u) for u,t.
~3! A set of equations for the correlation function to ob

both in nonstationary and stationary regime, from which o
can trace its oscillatory behavior.

However, the following questions are yet to be resolve
~1! Expressions for nonstationary and stationary proba

ity distribution have not been obtained.
~2! Thorough investigation of a set of equation for th

correlation function needs to be made.

IV. FOKKER-PLANCK EQUATION

The main theme of this section is derivation of a Fokke
Planck equation for the linear model using the corresp
dence between the delayed Langevin equation and the
layed random walk.~A short account of this section is give
in Ref. @32#.! Our strategy of derivation uses indirect deriv
tion via expansion of the delayed random walk, rather tha
direct derivation from the Langevin equation. The deriv

n

n

s
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Fokker-Planck equation contains a derivative with respec
the delay parameter. The stationary solution of the equa
is also determined and is shown to have good agreem
with numerical simulation.

We proceed toward a Fokker-Planck equation by expa
ing the linear model in the delayed random walk descript
using the ‘‘step operators’’ and its expansion as discusse
Ref. 2. We first rewrite the definition of the delayed rando
walk with delayt as follows:

Pt~n,t11;s,t2t!5g~s!Pt~n21,t;s,t2t!1 f ~s!Pt

3~n11,t;s,t2t!, ~50!

where

Pt~n,t;s,t2t![P~Xt5n;Xt2t5s! ~51!

in the earlier definition~3!. By subtractingP(n,t;s,t2t)
from both sides and usingg(s)1 f (s)51, we obtain

Pt~n,t11;s,t2t!2Pt~n,t;s,t2t!

5g~s!Pt~n21,t;s,t2t!1 f ~s!Pt~n11,t;s,t2t!

2@g~s!1 f ~s!#Pt~n,t;s,t2t!. ~52!

In order to go from this discrete space and time model t
continuous time and space expansion, we introduce the
operators, defined by the following action on an arbitra
function h:

E u
1h~u!5h~u11!, E u

2h~u!5h~u21!. ~53!

In effect,E u
1 andE u

2 shift u by one. They can be expande
as

E u
6516

]

]u
1

1

2

]2

]u2 6••• . ~54!

Using these step operators, we can rewrite the above e
tion as follows:

~E t
1E t

121!Pt~n,t;s,t2t!

5@~E n
221!g~s!1~E n

121! f ~s!#Pt~n,t;s,t2t!

~55!

We note that we are using these step operators not only
space but with delay which is a parameter in the model. T
implicit assumption is given that the following is justified fo
small parametere:

Pt1e~n,t;s,t2t!'Pt@n,t;s,t2~t1e!#'Pt~n,t;s,t2t!

1e
]

]t
Pt~n,t;s,t2t!. ~56!

We note that this is a rather strong assumption knowing
delay acts as a bifurcation parameter changing the beha
of the system. Thus, the above assumption can be valid
most, in the range where the behavior of the system
‘‘smooth’’ with respect to the delay parameter.
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With the expansion of step operator to second order in
and the first order int and t, we obtain the Fokker-Planck
equation:

S ]

]t
1

]

]t D Pt~n,t;s,t2t!5
]

]n
@~bs!Pt~n,t;s,t2t!#

1
1

2

]2

]n2 Pt~n,t;s,t2t!.

~57!

We note that this equation is for the joint probability b
tween two points with time specificallyt apart. Also, it
should be noted that the delay parametert appears in a de-
rivative term in a dimensionally correct way, which, how
ever, is not apparent from the form of the Langevin equat
given in Eq.~33!.

Let us investigate the stationary solution of the Fokk
Planck equation,

]

]t
Pt

e~n,s,t!5
]

]n
@~bs!Pt

e~n,s,t!#1
1

2

]2

]n2 Pt
e~n,s,t!,

~58!

with a boundary condition,

Pt
e~n,s,t50!5Ab

p
e2bn2

d~n2s!. ~59!

This boundary condition is chosen to satisfy the requirem
that with t50, the stationary solution should be identical
that for the Ornstein-Uhlenbeck process.

The solution can be found using Fourier transform
which involves only Gaussian integrations for this equatio
We first transform Eq.~58! as follows@33#:

]

]t
P e~k,s,t!5S ikbs2

1

2
k2DP e~k,s,t!, ~60!

where

P e~k,s,t!5E
2`

1`

Pt
e~n,s,t!e2 ikndn. ~61!

Solving this transformed equation using the boundary con
tion leads to

P e~k,s,t!5P e~k,s,t50!e„ikbs2~1/2!k2
…t,

~62!

P e~k,s,t50!5e2(1/4b)k2
.

The desired result is given by the inverse transform as
lows:

Pe~n,s,t!5SAb

p
e2 ~1/2! b2s2t2bnsD

3SA 1

2pt
e2 [ ~n2s)2/2t#D . ~63!

We note that the second factor approaches the delta func
with t approaching 0 consistent with the boundary conditio
A sample plot of this solution is shown in Fig. 7. To verif
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our analytical derivation, we have compared the solut
~63! with numerical simulation with varioust. Samples are
presented in Figs. 8 and 9, which show good agreement

We stress again that the derived Fokker-Planck equa
is just for the joint probability between two points with tim
specificallyt apart. Derivation of a general equation as w
as investigation of the behavior of its nonstationary solut
are left for the future. Nevertheless, our systematic deriva
here has illustrated a correspondence between the del
Langevin equations and delayed random walks, and prov
another tool in the form of the Fokker-Planck equation
study delayed stochastic systems. It is expected to be us
particularly with respect to gaining an understanding of th
probability density function. It is also of interest to compa
our results from this indirect path with a more direct deriv
tion from the Langevin Eq.~33!. Some research based o
expansion with delay parameters has been done@22#. How
these two lines of derivation relate to each other requ
further investigation.

V. DISCUSSION

We have presented a study of delayed stochastic sys
from both dynamical equation and random walk persp
tives. In particular, we have tried to illustrate the connectio
between the two descriptions.

Some points of discussion are now in order. The fi
point is how this model is placed in relation to other mod
with noise and delay~or memory, to be more general!. We
particularly note that the Langevin equation discussed he
not a special case of the generalized Langevin equa
which is consistent with the fluctuation-dissipation theore
As argued in Ref. 23 for the generalized Langevin equat
the noise term needs to be ‘‘colored’’ in Eq.~33! for consis-
tency. Investigation of the colored noise case in its relation
delayed random walks as well as further studies of the c
respondence of dynamical aspects of Eqs.~3! and ~33! are
currently underway.

We also note that we can find an application of the
layed stochastic models discussed here to the study of su
system as human posture control@34,18#. A resonance be-
havior between noise and delay by simpler stochastic
ments has been studied as well@20#. However, the task of

FIG. 7. A plot of the stationary joint probability distributio
function. The parameters are set asb5d/a50.004 andt530.
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FIG. 8. Stationary probability distribution from simulation
~dots! compared with the analytical solution obtained in the te
~line!. The parameters are set ass50, b5d/a50.008 andt510
~a!, 20 ~b!, 30 ~c!, and 40~d!. The simulation performed delaye
random walks of Eq.~2!, for 5000 steps starting from the origin fo
1000 trials. The position data after 4000 steps were used to com
the stationary joint probability.

FIG. 9. Comparison of the stationary probability distribution
in Fig. 2 with different parameter settings.b50.008, t510, s50
~a!, 4 ~b!, 8 ~c!, 12 ~d!, and 16~e!.
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understanding delayed stochastic systems with many
ments involved remains. Such efforts are at the same t
looking at a much wider range of important applications su
as neural networks, immune systems, economics, the In
net, and so on. Though limited to simple concrete model
is hoped that our investigation here from probabilistic a
dynamical perspectives will be of help toward deeper und
standing of delayed stochastic systems.

APPENDIX: CORRELATION FUNCTION OF LANGEVIN
EQUATION WITH DELAY

In this section, we connect the two approaches toward
correlation function for the Langevin equation with dela
The first approach is due to Ref.@17#, in which the expres-
sion given in Eq.~34! is derived. The second approach
along the line of Ref. 23 using Fourier transform. With th
approach,K(u) is given as follows in the integral forms:

K~u!5
1

2pE2`

1` eivu

v21b222bv sinvt
dv

5
1

pE0

1` cosvu

v21b222bv sinvt
dv

5
1

2pbE2`

1` eibgu

~ ig1e2 ibgt!~2 ig1eibgt!
dg.

~A1!

Thus, foru<t, these two approaches indirectly establish
the identity between the Eqs.~34! and ~A1!. Direct verifica-
tion of the identity is hindered by the fact that the poles
the integrand in Eq.~A1! are solutions of a transcendent
equation. In Fig. 10, we have shown an example of num
cal integration of the integral and Eq.~34! for K(0) @35#.

Finally, we note that when we have a colored noise of
following type instead of the white noise in Eq.~33!,
e

nd

y

le-
e

h
r-
it
d
r-

e
.

d

f

i-

e

^j t1
j t2

&5d@~ t12t!2t2#. ~A2!

we have the following integral form for the correlation fun
tion C(u):

C~u!5
1

2pE2`

1` eiv(u1t)

v21b222bv sinvt
dv. ~A3!

We note that from the comparison of integral forms, we ha
a relationship between the correlation function for the wh
and the colored noise case. In particular, whenu50,

C~0!5K~t!5
1

2b
. ~A4!

In the colored noise case considered here, the statio
mean square position is constant even with changing de
This is a natural consequence of the fact that our choice
the colored noise is based on the consistency condition w
the fluctuation-dissipation theorem discussed in Ref. 23.

FIG. 10. Example of comparison of the mean-square posi
^X2&5K(0) from the analytical solution~34! ~line! and from the
numerical integration of Eq.~A1! ~dots!. The parameters are set a
a550, d50.3.
,
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